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ABSTRACT 

 
The design of the software for a 2-micron coherent high-speed Doppler lidar system for CO2 measurement at NASA 
Langley Research Center is discussed in this paper. The specific strategy and design topology to meet the requirements 
of the system are reviewed. In order to attain the high-speed digitization of the different types of signals to be sampled 
on multiple channels, a carefully planned design of the control software is imperative. Samples of digitized data from 
each channel and their roles in data analysis post processing are also presented. Several challenges of extremely-fast, 
high volume data acquisition are discussed. The software must check the validity of each lidar return as well as other 
monitoring channel data in real-time. For such high-speed data acquisition systems, the software is a key component that 
enables the entire scope of CO2 measurement studies using commercially available system components. 
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1. INTRODUCTION 
 
Over the past decade or so, extensive research and development has been conducted by the NASA Langley Research 
Center to develop and mature high energy, pulsed, 2-micron laser technology. These lasers have been utilized in both 
Doppler Lidar 2-6,8,10-13 and Differential Absorption Lidar (DIAL) 7,9 configurations, using both direct and coherent 
(heterodyned) detection techniques.  
 
Our current CO2 Measurement Demonstration makes use of a high-speed coherent Doppler lidar1 used previously for 
wind measurements. Three significant improvements have been made in the current transceiver compared to the system 
used in the ground demonstration in 2007. First, the system is now a 10 Hz, on-and-off pulse pair format transmitter,  
allowing improved measurement precision by sensing nearly the same atmospheric volume for both the on-line and off-
line pulses, and effectively increasing the pulse repetition rate by four-fold. This will improve the measurement precision 
to better than 1.5% using 1000-m range bins, and reduce the required integration time to 2.112 minutes. Second, the 
selection of the R32 CO2 absorption line over R22 further improves the measurement precision, due to its negligible 
water vapor line interference. The parameters of the R32 line are given with accuracy of 0.4% for the line strength, 
0.15% for the air broadening coefficient, and 0.45% for the temperature parameter. These accuracies, together with the 
assumed accuracy of 2.6% for the pressure shift, are needed to attain the required CO2 measurement precisions. Third, 
the laser power is eight times greater than that of the previous ground demonstration system.  It will cover a larger 
measurement distance with increased signal carrier to noise ratio (CNR). 
 
 



A major advantage of our current lidar is its ability to serve as a dual-use instrument - measuring atmospheric CO2 
concentrations as a coherent DIAL instrument, and 3D winds as a coherent Doppler lidar instrument. The capability to 
make such complementary measurements, coincident in space and time and with improved precisions and accuracies, is 
key to enabling future strategic atmospheric measurements, such as those called for in the NRC Decadal Surveys. 
 
This paper will discuss various aspects related to the development of the Data Acquisition (DAQ) Software (SW) for the 
CO2 Demonstration, and its operation and functionality; including hardware (HW) configuration, scanner operation, data 
acquisition, and minimal data processing and storage of the acquired signals. It should be stressed that this research 
effort - to show the feasibility of using an existing coherent Doppler lidar system to measure atmospheric CO2 - was a 
technology demonstration,  requiring quick modification and turnaround of the control software. Software development 
for operational science instruments, and especially flight instruments, is governed by NASA Procedural Requirements 
that ensure adherence to documented development processes. 
 
This paper is organized as follows: the software development environment and the acquisition hardware are described 
briefly in Section 2. Section 3 provides an overview of the DAQ software and its user interface architecture, with its 
Validation Lidar (VALIDAR) heritage. Section 4 describes the acquired data and ways to assess the quality of each lidar 
return pulse. The last section provides conclusions as well as suggestions for future research and development of 
software for these dual use coherent lidar instruments. 
 
 

2. THE ACQUISITION HARDWARE AND ENVIRONMENT 
 
The data acquisition electronics were housed in an Agilent Technologies Acqiris CC105 Compact PCI (cPCI) Crate 
which provides five horizontal 6U slots. In the lowest "system" slot was a Single Board Computer (SBC) hosting a 
Microsoft Windows environment, allowing SW development and maintenance using the system itself. 
 
We used two identical Agilent Acqiris DC-252 10-bit Series cPCI/PXI Digitizers cards. Each DC-252 was equipped 
with a mezzanine front-end card that provided standard (50 Ohms) impedance coupling through three BNC connectors: 
one for each of its two input channels, and another for an external trigger signal. Internal triggering is also supported, 
using the signal level on one of the input channels. Both of our DC-252 cards were equipped with the maximum optional 
memory, accommodating up to 256M samples per channel. While it may be tempting to install  electronics cards in 
alternate slots for thermal reasons, the DC-252 cards were placed in the two adjacent slots just above the system slot to 
minimize potential communications delays. 
 
The DC-252 digitizers support a large number of configurations for different data acquisition requirements. For example, 
both Channel 1 and Channel 2 have their own A/D converter (ADC) and acquisition memory, but the ADCs can be 
"interleaved" and the acquisition memory combined to support a single channel with more capability.  In addition, the 
acquisition memory is dual-ported and can be configured as a circular buffer to allow for Simultaneous Acquisition and 
Readout (SAR) operation. These advanced features were not required for the current demonstration project, but may be 
useful for future enhancements.  
 
In our configuration, the two DC-252 Digitizers were connected together using an external AS bus 2 connector. The 
Acqiris System Software configures the two identical dual-channel digitizers into a single "Multi-Instrument" with four 
input channels, and which share a common internal clock and external trigger. We used one input channel (Channel 1) of 
each DC-252 card. Note that for the 4-channel Multi-Instrument, the system software renumbers the channels, and they 
are henceforth referred to as Channel 1 and Channel 3. 
 
The Acqiris System Software Application Programming Interface (API) is described in a variety of documents such as a 
Programmer's References Manual14 and a User Manual15 for the 10-bit digitizer family. Some API procedures are 
specific to the 10-bit series while others are applicable to different models. In some cases different models use the same 
procedures but interpret the parameters passed to them differently. It is essential that the software developer read the 
documentation thoroughly. 
 
 



 
CO2 measurements require very large amounts amount of data to be acquired in a short time. It was thus necessary to test 
the HW to ensure that it could accommodate these sample frequencies and data volumes, without dropping a pulse. The 
DC-252 digitizers store each triggered pulse in its own "segment" of acquisition memory, along with a Segment 
Descriptor - a data structure containing timing and auxiliary information. Each Segment Descriptor includes two 32-bit 
unsigned integer variables, timeStampHi and timeStampLo, that record the pulse's start time in picoseconds. As a stress 
test, we acquired 75,000 samples at 500 MHz for each of 200 pulses fired at 5 kHz, corresponding to 200 s or 
200,000,000 ps between pulses. If no pulses were missed, the timestamps between the first and last pulse should differ 
by about 199 * 200 s  = 39,800 s. The segment descriptors for the first and last pulses showed the following: 
 

segDesc[0]                                                          segDesc[199] 
timeStampHi               5972                                timeStampHi              5982 
timeStampLo   3615426219                                timeStampLo    465744444 

 
The less significant timeStampLo "rolls over" at 232 ps, incrementing timeStampHi in the process. Thus, the first and last 
times stamps are equivalent to 25,653,160,117,931 ps and  25,692,960,109,116 ps, respectively, and differ by  
39,799.991185 s. This indicates that the digitizer captured all of the pulses, even at a 5 kHz pulse rate and while 
collecting 75,000 samples per pulse. 
 
 

3. DESIGN AND DEVELOPMENT OF CO2 MEASUREMENT SOFTWARE 
 
We developed the Data Acquisition (DAQ) Software to support this Coherent Lidar CO2 Measurement Demonstration 
by modifying the existing VALIDAR application written in 2007 by the second author of this paper. The VALIDAR SW 
was developed using Visual C++ 6.0. The Graphical User Interface (GUI) was built within Microsoft Visual Studio, and 
made use of National Instruments Measurement Studio for graphical displays (Figure 1).  
 

 
Fig. 1.  The Original VALIDAR Preferences Dialog and Run-Time Display 

 
We opted to use the same tools and versions used to develop the VALIDAR SW for several reasons. 1) This precluded 
some potential problems, such as compiler inconsistencies. 2) The CO2 and Doppler wind measurements - while 
different in nature - used essentially the same laser equipment, allowing reuse of the scanner control software without 
modification.  3) Our CO2 Demo used new digitizer HW, but it was from the same vendor and the software interfaces 
were very similar. Finally, we hoped to facilitate future development of SW to acquire both types of measurements.  



 
 
There were also some challenges presented by these choices. The VALIDAR SW included DAQ, but also Data Analysis 
and Processing (DAP) functionality - which was relegated to post-processing for the CO2 Demo. Also, a significant 
fraction of  VALIDAR code implemented its User Interface, and modifications to this code were not straightforward. 
 
The architecture of the CO2 Demo SW was built around the two VALIDAR Windows Dialogs (Figure 1), implemented 
as Visual C++ classes. User settings for a data acquisition are read from an ASCII preferences file, displayed in the 
Preferences Dialog (left) where they can  be modified, then re-saved to the ASCII file. When the OK button on the 
Preferences Dialog is clicked, the Main Dialog (right) is enabled for data acquisition. 
 
We initially planned to modify the VALIDAR SW and GUI, but retain all of its Doppler wind features. However, the 
current software developer was not familiar with the internals of the VALIDAR C++ code. To make the amount of code 
manageable for understanding and modification within the short deadline, it became necessary to temporarily strip out 
the unused Doppler code and interface elements. 

 
4. DATA ACQUISITION AND ANALYSIS 

 
For the CO2 Demonstration, we acquired data using the following parameters: 

 Sampling Frequency 500 MHz 
 Samples per Pulse 17,500 

 Pulses per Set/File 600 
 Pulse Frequency  10 Hz 

 
The digitizer HW was configured to simultaneously acquire data on two channels. The data acquired for two consecutive 
pulses are displayed in Figure 2, with Channel 1 in the top graph and Channel 3 in the bottom graph. The first 1024 
samples of each pulse are called the Monitor Region and the remaining samples the (Atmospheric) Return Region. (For 
Doppler wind measurements the Monitor Region is referred to as the Zero Doppler (ZD) Region.) 
 

 
Fig. 2.  Two consecutive pulses showing acquired data from both Channel 1 (heterodyned lidar pulse, outgoing and 

atmospheric return)  and Channel 3 (pulse represents outgoing lidar pulse power, base signal represents input to switch 
multiplexing on-line and off-line frequencies).  For this CO2 Demo the laser was pulsed at 10 Hz, and 17,500 samples 
acquired at 500 MHz for each. The first pulse is at the on-line frequency and the second at the off-line frequency. 

 
The Monitor Regions of both channels are expanded in Figure 3. The first pulse was at the on-line frequency of the 
DIAL instrument and the second at the off-line frequency. (Note that on-line denotes a frequency selected within the 
R32 CO2 absorption line, while off-line denotes one selected nearby - but well outside the absorption line. The on-line 
frequency may coincide with the center frequency of the absorption line, but more often is slightly displaced from the 



center at a side-line frequency.) By taking an FFT (Figure 4) of the Channel 1 Monitor Region, and finding the peak 
frequency, one can determine the quality of each pulse. In our experiment, a pulse was deemed Good  if the peak 
frequency was within 5 MHz of the average frequency, which was about 109 MHz. In one session we collected 30 sets 
of 600 pulses each (18,000 pulses) while observing only 14 Bad pulses. 
 

 
Fig. 3.  Expanded view of the Monitor Region for the same two pulses as in Figure 2. The Channel 1 monitor data (top) 

provides frequency spectrum information for the corresponding lidar pulse as it is emitted. This is used to identify 
Good vs. Bad pulses, and also to quantify residual jitter between the frequencies of the seed laser signal and the actual 
lidar pulse. The base signal level in the Channel 3 monitor region (bottom) indicates whether the pulse frequency is on-
line or off-line. (On-line is indicated by the lower level, near 0.0V.) The area under the peak can be integrated to 
determine total pulse power. Note the slight saturation of the second pulse where the Channel 3 data are truncated at 
about 0.5V. This is easily corrected using the Acqiris System Software to adjust the offset for that digitizer channel. 

 
 
The VALIDAR program implements both DAQ and DAP Tasks. For the CO2 Demo, DAP was delegated to post-
processing using separate software. However, we prototyped some of the CO2 DAP SW in MATLAB, pending 
additional resources to develop more formal versions. 
 
While the CO2 Demo was restricted to DAQ SW, some DAP SW functionality is useful to determine the quality and 
characteristics of each lidar return pulse during operations. This information can facilitate decisions related to where to 
take subsequent data and what acquisition settings to change. In addition, while pulses nominally alternate between on-
line and off-line frequencies, occasionally 2 or 3 adjacent on-line pulses are observed. Thus it is always necessary to 
determine the frequency of each pulse. This is easily done by examining the base voltage of the Channel 3 signal, which 
is very close to 0.0V for on-line pulses and about 1.2V for off-line pulses.  
 
The Channel 3 base voltage is measured in the Return Region near the center of the pulse. Once this value is determined, 
the remainder of the Channel 3 Return Region is redundant and need not be saved to a file. Also, one might opt to save 
only Good pulses, as described above. Thus, the use of some rudimentary DAP SW during data acquisition can decrease 
the data transfer and storage overhead.  
 
 



 
 

Fig. 4.  Magnitudes of 50% overlapping, 512-element FFTs (top row) of the Monitor Region of Shot #1, Channel 1. These 
are combined to get an average (bottom row) FFT. The peak frequency (at index 112 here, corresponding to about 109 
MHz) is used to determine if the return data is to be considered Good and further processed, or Bad and discarded. 

 
 

5. CONCLUSIONS 
 
DAQ SW was rapidly prototyped to demonstrate the ability to make very high frequency atmospheric CO2 
measurements using a coherent DIAL lidar instrument previously used for coherent Doppler wind measurements. This 
CO2 Measurement Demonstration showed that the HW and SW could satisfy the challenging requirements related to 
sampling frequency and data storage for this application. There are additional techniques and digitizer configurations 
that could accommodate future, more taxing requirements. 
 
It may be beneficial to develop DAQ SW for such dual-use lidars, especially if there is an anticipated need to support 
future space-borne versions of these instrument. While the DAP SW may be separately developed for post-processing, 
some DAP functionality is required during acquisition to provide quick-look display information, and to determine the 
quality of each return pulse. By filtering the data based on quality and retaining only what is acceptable, the challenging 
requirements for data storage and transfer posed by these instruments can be mitigated. 
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